Finding Archetypal Spaces Using Neural Networks

Abstract

Archetypal analysis is a data decomposition method that describes each observation in a dataset as a convex combination of ‘‘pure types’’ or archetypes. These archetypes represent extrema of a data space in which there is a trade-off between features, such as in biology where different combinations of traits provide optimal fitness for different environments. Existing methods for archetypal analysis work well when a linear relationship exists between the feature space and the archetypal space. However, such methods are not applicable to systems where the feature space is generated non-linearly from the combination of archetypes, such as in biological systems or image transformations. Here, we propose a reformulation of the problem such that the goal is to learn a non-linear transformation of the data into a latent archetypal space. To solve this problem, we introduce Archetypal Analysis network (AAnet), which is a deep neural network framework for learning and generating from a latent archetypal representation of data. We demonstrate stateof-the-art recovery of ground-truth archetypes in non-linear data domains, show AAnet can generate from data geometry rather than from data density, and use AAnet to identify biologically meaningful archetypes in single-cell gene expression data.

Publication
2019 IEEE International Conference on Big Data
Alex Tong
Alex Tong
Postdoctoral Fellow

My research interests include flow models and optimal transport applied to cells and proteins.